Structural mechanisms of chaperone mediated protein disaggregation

نویسنده

  • Rui Sousa
چکیده

The ClpB/Hsp104 and Hsp70 classes of molecular chaperones use ATP hydrolysis to dissociate protein aggregates and complexes, and to move proteins through membranes. ClpB/Hsp104 are members of the AAA+ family of proteins which form ring-shaped hexamers. Loops lining the pore in the ring engage substrate proteins as extended polypeptides. Interdomain rotations and conformational changes in these loops coupled to ATP hydrolysis unfold and pull proteins through the pore. This provides a mechanism that progressively disrupts local secondary and tertiary structure in substrates, allowing these chaperones to dissociate stable aggregates such as β-sheet rich prions or coiled coil SNARE complexes. While the ClpB/Hsp104 mechanism appears to embody a true power-stroke in which an ATP powered conformational change in one protein is directly coupled to movement or structural change in another, the mechanism of force generation by Hsp70s is distinct and less well understood. Both active power-stroke and purely passive mechanisms in which Hsp70 captures spontaneous fluctuations in a substrate have been proposed, while a third proposed mechanism-entropic pulling-may be able to generate forces larger than seen in ATP-driven molecular motors without the conformational coupling required for a power-stroke. The disaggregase activity of these chaperones is required for thermotolerance, but unrestrained protein complex/aggregate dissociation is potentially detrimental. Disaggregating chaperones are strongly auto-repressed, and are regulated by co-chaperones which recruit them to protein substrates and activate the disaggregases via mechanisms involving either sequential transfer of substrate from one chaperone to another and/or simultaneous interaction of substrate with multiple chaperones. By effectively subjecting substrates to multiple levels of selection by multiple chaperones, this may insure that these potent disaggregases are only activated in the appropriate context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metazoan Hsp70-based protein disaggregases: emergence and mechanisms

Proteotoxic stresses and aging cause breakdown of cellular protein homeostasis, allowing misfolded proteins to form aggregates, which dedicated molecular machines have evolved to solubilize. In bacteria, fungi, protozoa and plants protein disaggregation involves an Hsp70•J-protein chaperone system, which loads and activates a powerful AAA+ ATPase (Hsp100) disaggregase onto protein aggregate sub...

متن کامل

Small heat shock proteins in protein aggregation and disaggregation

Many factors leading to unfolding and misfolding of proteins eventually result in protein aggregation. Stress imposed by high temperature was one of the first aggregation-inducing factors studied, and remains one of the main models in this field. The cell needs chaperone proteins to control and counteract the aggregation process. Elimination of aggregates can be achieved by solubilization of ag...

متن کامل

Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB

Cell survival under severe thermal stress requires the activity of the ClpB (Hsp104) AAA+ chaperone that solubilizes and reactivates aggregated proteins in concert with the DnaK (Hsp70) chaperone system. How protein disaggregation is achieved and whether survival is solely dependent on ClpB-mediated elimination of aggregates or also on reactivation of aggregated proteins has been unclear. We en...

متن کامل

Chaperoned Protein Disaggregation—The ClpB Ring Uses Its Central Channel

In this issue of Cell, exploit a clever manipulation of the Hsp100 ring chaperone, ClpB, to gain some mechanistic and physiologic understanding of the action of this chaperone in mediating ATP-dependent disaggregation of protein aggregates that accumulate in the bacterial cytoplasm under severe heat shock conditions.

متن کامل

Molecular Chaperones: Structure of a Protein Disaggregase

The ring-forming molecular chaperone Hsp104/ClpB is a member of the AAA+ protein family which rescues proteins from aggregated states. The newly determined crystal structure of ClpB provides new insights into the mechanism of protein disaggregation, suggesting a crowbar activity mediated by a unique coiled-coil domain.

متن کامل

Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.

During production in recombinant Escherichia coli, the human basic fibroblast growth factor (hFGF-2) partly aggregates into stable cytoplasmic inclusion bodies. These inclusion bodies additionally contain significant amounts of the heat-shock chaperone DnaK, and putative DnaK substrates such as the elongation factor Tu (ET-Tu) and the metabolic enzymes dihydrolipoamide dehydrogenase (LpdA), try...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014